首页> 外文OA文献 >Gauss-Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis
【2h】

Gauss-Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis

机译:Gauss-Galerkin求积分规则用于二次和三次样条空间   及其在等几何分析中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce Gaussian quadrature rules for spline spaces that are frequentlyused in Galerkin discretizations to build mass and stiffness matrices. Bydefinition, these spaces are of even degrees. The optimal quadrature rules werecently derived [5] act on spaces of the smallest odd degrees and, therefore,are still slightly sub-optimal. In this work, we derive optimal rules directlyfor even-degree spaces and therefore further improve our recent result. We useoptimal quadrature rules for spaces over two elements as elementary buildingblocks and use recursively the homotopy continuation concept described in [6]to derive optimal rules for arbitrary admissible number of elements. Wedemonstrate the proposed methodology on relevant examples, where we deriveoptimal rules for various even-degree spline spaces. We also discussconvergence of our rules to their asymptotic counterparts, these are theanalogues of the midpoint rule of Hughes et al. [16], that are exact andoptimal for infinite domains.
机译:我们为样条空间引入高斯正交规则,这些规则在Galerkin离散化中经常使用,以建立质量和刚度矩阵。按照定义,这些空间是偶数度的。最佳正交规则是新近推导的[5],作用于最小奇数度的空间,因此仍然略次优。在这项工作中,我们直接导出偶数度空间的最优规则,因此进一步改善了我们最近的结果。我们对两个元素上的空间使用最优正交规则作为基本构造单元,并递归地使用[6]中描述的同伦连续性概念来推导任意允许数量的元素的最优规则。在相关示例上演示所建议的方法,在此我们导出各种偶数度样条空间的最佳规则。我们还讨论了我们的规则与渐近对等规则的收敛性,它们是休斯等人的中点规则的类似物。 [16],这对于无限域是精确且最优的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号